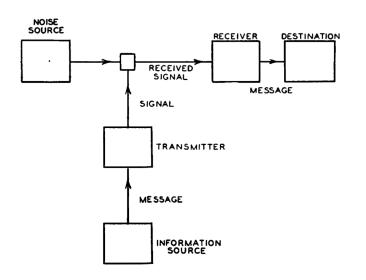
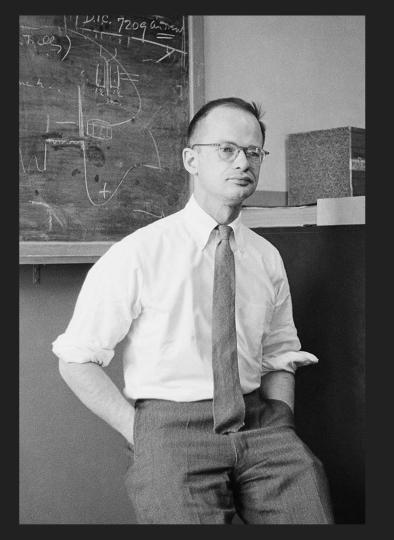

Gathering Randomness for the Vernam System The Cryptographic Use of Noise at Bell Labs


> Charles Berret Columbia University


SHOT Annual Meeting October 27, 2017

The Bell System Technical Journal Julv. 1948

Vol. XXVII

.No. 3

A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION

HE recent development of various methods of modulation such as PCM **L** and PPM which exchange bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A basis for such a theory is contained in the important papers of Nyquist¹ and Hartley² on this subject. In the present paper we will extend the theory to include a number of new factors, in particular the effect of noise in the channel, and the savings possible due to the statistical structure of the original message and due to the nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point. Frequently the messages have *meaning*; that is they refer to or are correlated according to some system with certain physical or conceptual entities. These semantic aspects of communication are irrelevant to the engineering problem. The significant aspect is that the actual message is one selected from a set of possible messages. The system must be designed to operate for each possible selection, not just the one which will actually be chosen since this is unknown at the time of design.

If the number of messages in the set is finite then this number or any monotonic function of this number can be regarded as a measure of the information produced when one message is chosen from the set, all choices being equally likely. As was pointed out by Hartley the most natural choice is the logarithmic function. Although this definition must be generalized considerably when we consider the influence of the statistics of the message and when we have a continuous range of messages, we will in all cases use an essentially logarithmic measure.

The logarithmic measure is more convenient for various reasons:

1. It is practically more useful. Parameters of engineering importance

¹ Nyquist, H., "Certain Factors Affecting Telegraph Speed," Bell System Technical Journal. April 1924, p. 324; "Certain Topics in Telegraph Transmission Theory," A. I. E. E. Trans., v. 47, April 1928, p. 617.

² Hartley, R. V. L., "Transmission of Information," Bell System Technical Journal, July 1928, p. 535.

Communication Theory of Secrecy Systems*

By C. E. SHANNON

1. INTRODUCTION AND SUMMARY

'THE problems of cryptography and secrecy systems furnish an interesting application of communication theory.¹ In this paper a theory of secrecy systems is developed. The approach is on a theoretical level and is intended to complement the treatment found in standard works on cryptography.² There, a detailed study is made of the many standard types of codes and ciphers, and of the ways of breaking them. We will be more concerned with the general mathematical structure and properties of secrecy systems.

The treatment is limited in certain ways. First, there are three general types of secrecy system: (1) concealment systems, including such methods as invisible ink, concealing a message in an innocent text, or in a fake covering cryptogram, or other methods in which the existence of the message is concealed from the enemy; (2) privacy systems, for example speech inversion, in which special equipment is required to recover the message; (3) "true" secrecy systems where the meaning of the message is concealed by cipher, code, etc., although its existence is not hidden, and the enemy is assumed to have any special equipment necessary to intercept and record the transmitted signal. We consider only the third type-concealment systems are primarily a psychological problem, and privacy systems a technological one.

Secondly, the treatment is limited to the case of discrete information, where the message to be enciphered consists of a sequence of discrete symbols, each chosen from a finite set. These symbols may be letters in a language, words of a language, amplitude levels of a "quantized" speech or video signal, etc., but the main emphasis and thinking has been concerned with the case of letters.

The paper is divided into three parts. The main results will now be briefly summarized. The first part deals with the basic mathematical structure of secrecy systems. As in communication theory a language is considered to

* The material in this paper appeared originally in a confidential report "A Mathematical Theory of Cryptography" dated Sept. 1, 1945, which has now been declassified. ¹Shannon, C. E., "A Mathematical Theory of Communication," *Bell System Technical*

de Cryptographie."

Journal, July 1948, p. 379; Oct. 1948, p. 623. ² See, for example, H. F. Gaines, "Elementary Cryptanalysis," or M. Givierge, "Cours

The Bell System Technical Journal Julv, 1948

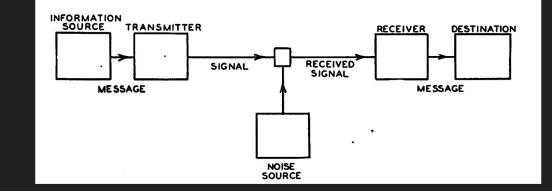
Vol. XXVII

No. 3

A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION


THE recent development of various methods of modulation such as PCM and PPM which exchange bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A basis for such a theory is contained in the important papers of Nyquist¹ and Hartley² on this subject. In the present paper we will extend the theory to include a number of new factors, in particular the effect of noise in the channel, and the savings possible due to the statistical structure of the original message and due to the nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point. Frequently the messages have meaning; that is they refer to or are correlated according to some system with certain physical or conceptual entities. These semantic aspects of communication are irrelevant to the engineering problem. The significant aspect is that the actual message is one selected from a set of possible messages. The system must be designed to operate for each possible selection, not just the one which will actually be chosen since this is unknown at the time of design.

If the number of messages in the set is finite then this number or any monotonic function of this number can be regarded as a measure of the information produced when one message is chosen from the set, all choices being equally likely. As was pointed out by Hartley the most natural choice is the logarithmic function. Although this definition must be generalized considerably when we consider the influence of the statistics of the message and when we have a continuous range of messages, we will in all cases use an essentially logarithmic measure.

The logarithmic measure is more convenient for various reasons:

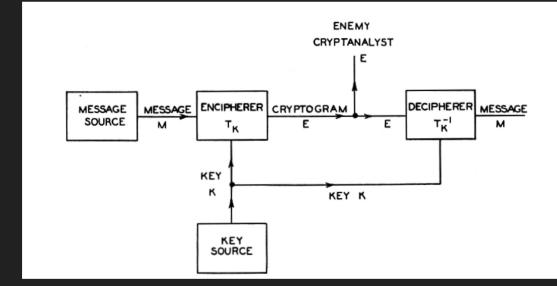
1. It is practically more useful. Parameters of engineering importance

¹ Nyquist, H., "Certain Factors Affecting Telegraph Speed," Bell System Technical Journal, April 1924, p. 324; "Certain Topics in Telegraph Transmission Theory," A. I. E. E. Trans., v. 47, April 1928, p. 617.

² Hartley, R. V. L., "Transmission of Information," Bell System Technical Journal, July 1928, p. 535.

Communication Theory of Secrecy Systems*

By C. E. SHANNON

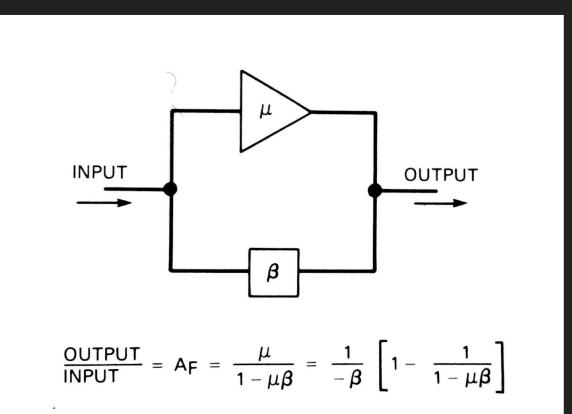

1. INTRODUCTION AND SUMMARY

THE problems of cryptography and secrecy systems furnish an interesting application of communication theory.¹ In this paper a theory of secrecy systems is developed. The approach is on a theoretical level and is intended to complement the treatment found in standard works on cryptography.² There, a detailed study is made of the many standard types of codes and ciphers, and of the ways of breaking them. We will be more concerned with the general mathematical structure and properties of secrecy systems.

The treatment is limited in certain ways. First, there are three general types of secrecy system: (1) concealment systems, including such methods as invisible ink, concealing a message in an innocent text, or in a fake covering cryptogram, or other methods in which the existence of the message is concealed from the enemy; (2) privacy systems, for example speech inversion, in which special equipment is required to recover the message; (3) "true" secrecy systems where the meaning of the message is concealed by cipher, code, etc., although its existence is not hidden, and the enemy is assumed to have any special equipment necessary to intercept and record the transmitted signal. We consider only the third type—concealment systems are primarily a psychological problem, and privacy systems a technological one.

Secondly, the treatment is limited to the case of discrete information, where the message to be enciphered consists of a sequence of discrete symbols, each chosen from a finite set. These symbols may be letters in a language, words of a language, amplitude levels of a "quantized" speech or video signal, etc., but the main emphasis and thinking has been concerned with the case of letters.

The paper is divided into three parts. The main results will now be briefly summarized. The first part deals with the basic mathematical structure of secrecy systems. As in communication theory a language is considered to

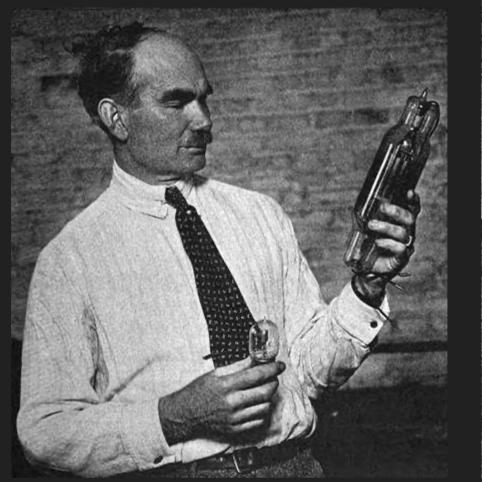


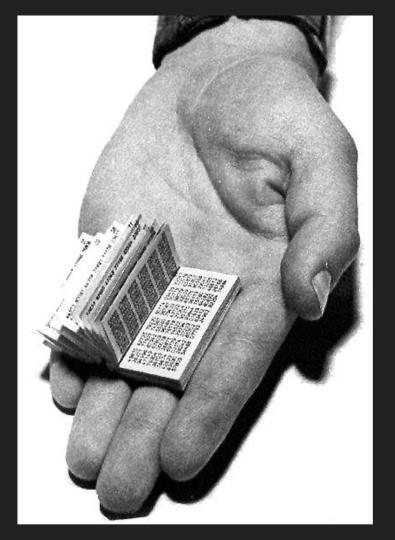
^{*} The material in this paper appeared originally in a confidential report "A Mathematical Theory of Cryptography" dated Sept. 1, 1945, which has now been declassified.

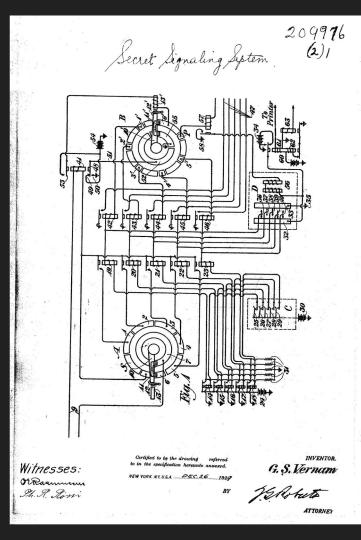
¹ Shannon, C. E., "A Mathematical Theory of Communication," Bell System Technical Journal, July 1948, p. 379, Oct. 1948, p. 623. ² See, for example, H. F. Gaines, "Elementary Cryptanalysis," or M. Givierge, "Cours

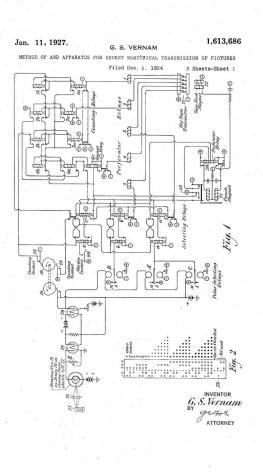
² See, for example, H. F. Gaines, "Elementary Cryptanalysis," or M. Givierge, "Courde Cryptographie."

State of the second second









05	OG
000 ORVIETEHNJARBHSECKATOIOGX	000 EINRETEEHLLTATIFLEYOEYUIN
019 VEHQREYTUGICGEITOECTUJMOJ	019 DXRYAIEIERZZRILOEJVAYGAIZ
032 KESFETOGKSBOPTGXFOUHIIWYS	032 KJIRITMRRGIEWCCKPKUFBEMXA
04b 010EHV305PTAHHNCTMOLOJAYV	046 AEJIXUFIIYLPEFOTTHSIPBFLS
064 GRDTIBXDGCRMEPUTROTZZIIAU	054 VXXBTULONUWAREEDELEGAZY
07d YYZRKTVRFXEPCRATNNGITAYOI	074 KXMWYIAHBRYXJMTEMBFBZFMAG
096 RPBOCHMOXCGOPVCTBRORGBRZ	056 CFIQQB00ATZOREHSXSLGTXAEI
0af BTRDPGCYD0KKGRXSKJXMFFUHD	056 SOGCAWJCPUKJIILWXTS00ZJN.
068 ENXEDEKMEMOXEGNWV0COCVBO	061 DCJIWNTMHXWRMIQIYZLOUZYJ
061 GGLFLIX0EBFNPORGECYJEAXEV	076 KGCRQHHRAOREHYKVTYEOCEN
07a ETUKMOXEMGBEENNFIEYBIORCT	113 HATAVEEVDMDITBHUYATGNZJA.
113 PVERVTXXI0ZINEYIFTRDLEZYO	12C DUODYNKPMLOAAERIXENEXUN
12c IZDMATZJCYFDINSNWXEFBVTDL	145 RSRMGTIOERDZNBQXIOONVURMI
145 TDPEEGYGIVWVLIOEXWGGPKUOO	156 MAWERQALADITOTKBIPFFCSA.
15e IEITODEAOALMOFUWCESLZTHYT	177 YVKVGJTDORAEDEWHZGPJJTMI
177 BOHSDEAITONFDYRKJONJFOGU	190 APTCGWARIOIITEVRGAEOBBJPT
15e IEITODEAOALMOFUWCESLZTHYT	15e MAWERQALAOITQTKBIPFPCSAP
177 BQHSQEAINTONFDYRKJONJFOGU	177 YVKKVGJTDQRAEDEWHZGPJJTM)
	220 VDGTEZEMPEMIFETUNUKUTUNU
07	O8
000 WRTKIEEDDRRRTIBIAIJCJNRWO	000 QHSJEGZNVBWIOTEBTWDCQEMT
019 TTEREDAXBTLONUENGLIFROXRS	019 ANUEWAJXNYMMASAUNJSNUYN
07	08
000 WRTKIEEDDRRRTIBIAJJCJNRWO	000 QHSJEGZNVBWIOTEBTWDCOEMT

0000 000 000 000 000 000 000 000 000 0		

		00000000000000000000000000000000000000
		00000000000000000000000000000000000000
13 0 00 00 00 00 00 00 00 00 00 00 00 00		
	00000000000000000000000000000000000000	
C 0 0 C C 0 0 C C 0 0 C C 0 0 C C 0 0 C C 0 0 C C C 0 C	00000000000000000000000000000000000000	
	000000000000000000000000000000000000000	

TABLE OF RANDOM DIGITS

				TABLE						
338						2 15684	51340	11255	00-	
338				- 0019	4 6603	1 77840	70008	43213	00543	84815
			20 688	42 9819	3496	1 17008	90279	13986	59116	10015
168	10 20	0799 666 475 774				0 47008		25233	88866	10886
168	1 26	5475 774			5320	9 75201		65655		
1685						6 35621	54150	000000	42178 18754	802288
1685				72 91602						
1680		762 2395				8 92495		21039		
1685			546	00 94187			36959		17340	98043
	· 60	298 0021			0049			21741		
1685								17687		
1685						1 32723	56132	43989	71962	28963
1685				0 97938	1922	1 02100				88840
1685		574 9672				8 09349	85888	62179	10000	
16855			- 2 - 20	3 41333	5641	11983	81743	54203	19883 22673 01287	67992
	205	528 3761		9 00691	2100	0 11983		84710	22673	62200
16860				0 97968	3589	7 02802	26553	72468	01287 99724	30750
16861				2 65072	8254	08639		00619	99724 19312	9784
16862				0 08751	78592	15297	22480	00019	19312	4421
16863	083	87 7809	9 9417	0 05151						
16864	242	51 1000			85903	18674		31149	05179	621-
		89 21445	9006	8 67376	02056	81319		52550		
16865	353	50 35878	1923	7 51696	03555	33093	50506	18578	04991	37731
16866	660:	50 33870	1108	0 43180	89557	51205	45981	68698	37183	69827
16867	342	15 27992	1979	3 38557	90041	49985	22982	36591	55770	36457
16868	8154	48 50795		0 87157	27128	49900			55770	68401
16869	1079	98 35694	3000					68500		
			00433	88025	73065	54993			00914	84510
16870	2008	58 74967	00411	22506	80200	41880		18039		
16871	7079	5 81112		24779	69394	29880		13143		
16872	3032	15.54766	93220	74778	32490	71884	17051	15930	33106	49757
	4289	3 81476	87682	12972	79928	33583	50366	33222	07826	05218
16873	1833	1 97115	84538	11061	10000					00210
16874	1000			The second		93130	76393	85686	40929	01000
	0004	0 00284	84227	84858	20423	93130	02618		10029	04637
16875	9034	9 73233	91250	67075		80197			50508	24060
16876	3807	6 17266	73202	20623	00803	84046	67598		05642	25670
16877	4230	0 17200	62205	32343	36392	52451		17257	38658	15322
16878	18414	4 12694	01010	38172	63105	29247	93288	33588	54256	93563
16879	5528	6 30468	01515	30415	-					
				54593	80317	25137	47899	77649	28912	58164
16880	30865	5 02157	82487	34383		66972	08908		38703	40720
16881	22495	5 72694	76620	66182	93729	61600	69434		86202	
16882	87433	3 01700	20949	08219		51633				
16883	52903	3 02219	44376	07662		65176	10558		68966	
16884	59532	2 59191	66832	33034	39950	15435	30083	28580	27588	19066
10004	00000									
10005	70250	28784	88290	55343	87238	55371	87310	52811	18779	
16885		92056		47453		24962	79787	60704	55141	85543
16886						04909	54396		65721	05963
16887		29039		77828			75047	55351	57429	61939
16888		98156	33915			85888			66905	
16889	82039	37543	54979	36278	18345	20663	68679	80455	66905	OTTES
										04000
16890	05435	10525	13303	53439	57066	46325	61272	01028	27506	04000
16891	58884	47108	85374	75305	16104	35321	69694	86702	17280	27130
16892		78070	91129			43799	93406		06001	35715
16893		91024	48844		38473			63953	03621	67019
16894		03428							67553	22193
Torna	00011	00928	52171	01010	96305	15792	07644	94726	01000	
10000										07310
16895	31381	38625	95054		70712	36972	11656	71783	57416	01024
16896		27121	98412	82098	40072	61147	32451	00690	83473	74224
16897	51734	69015	10409		30340			63761	86369	79563
16898	78085	22653	96833						07404	47529
16899	55093		30171		46873		92414		53339	18821
		were's	20111	40134	84579	83985	73283	01874	22333	

16949

